
Model and Data Differences in an
Enterprise Low-Code Platform

Arvid Butting, Timo Greifenberg, Katrin Hölldobler
mgm technology partners gmbh

Aachen, Germany
{firstname}.{lastname}@mgm-tp.com

Timo Kehrer
University of Bern
Bern, Switzerland

timo.kehrer@unibe.ch

Abstract—The comparison of versions and variants of models
is a well-known challenge in model-driven software engineering.
In the context of low-code platforms, models are rarely text-only
and the modelers are not necessarily familiar with programming.
Therefore, presenting the comparison results in an understand-
able way and on a suitable level of abstraction is a challenging
problem vital, e.g., for enabling asynchronous collaborative low-
code development.

This paper describes an approach for calculating and dis-
playing differences between versions or variants of models in
A12, a low-code platform for enterprise applications that employs
different types of models to represent data and its presentation.
The differencing infrastructure is built of reusable modules to
avoid redundancies of its commonalities across different A12
model types. Despite that, it can be applied for calculating and
displaying differences of data conforming to models in low-
code applications. The approach is integrated into A12, but the
concepts behind it are transferable to other low-code platforms.

Index Terms—Low-Code Platform, A12, Model Differencing

I. INTRODUCTION

In software engineering, comparing development artifacts
with each other is a common use case. Different versions of
an artifact are compared in the context of software evolution
or version control systems like Git [1]. Variants of an arti-
fact are compared, e.g., in the context of software product
lines [2], particularly when extracting a product line from a
set of variants in order to analyze their commonalities and
differences [3]. In other scenarios, such as clone detection [4],
even conceptually unrelated artifacts are compared.

Model-driven development (MDD) [5] and low-code plat-
forms [6], [7] (aka. low-code development platforms [8])
use models as central development artifacts throughout the
software lifecycle. In the context of this paper, we consider
models as special kinds of artifacts that conform to a meta-
model [9] and have a well-defined meaning in terms of a
semantics [10]. Low-code platforms in general, and those
for enterprise applications in particular, often have models
whose syntax is diagrammatic or borrows elements of user
interfaces via projectional editors [11]. While such models can
be compared based on a textual representation using line-based
diff algorithms as adopted, e.g., by version control systems
such as Git, it has long been recognized that this is not an
adequate solution [12]. The major disadvantage of line-based
differencing is that it is not aware of the language’s syntax
and semantics. Therefore, line-based approaches may report

changes that are not semantically relevant, such as white-space
changes to mention only one of the most simple examples.
Moreover, it is difficult for users to interpret the calculated
differences for models that have no textual syntax.

The MDD research community has tackled the challenge
of model differencing from various angles. Most notably,
a number of approaches for comparing models take into
account the abstract syntax [13], i.e., the internal structure
of models. However, virtually all approaches presented in the
literature have studied model differencing from an algorithmic
perspective, while the presentation of differences has been
largely neglected. We argue that properly displaying model
differences is of utmost importance for modelers who do not
necessarily have a programming background, such as citizen
developers [8] in the context of low-code platforms.

Modelers use low-code development platforms to create
models that describe aspects of (low-code) applications. A12
[14] is an enterprise low-code platform relying on projectional
editors that comprise editor elements, such as forms, overviews
(also referred to as tables), and trees that are also commonly
used in low-code applications. To that end, we argue that
displaying model differences in dedicated diff editors of the
platform is an option for integrating the calculated differences
with the low-code platform. The diff editors aim to reduce
the accidental complexity [15] of citizen developers needing
to comprehend differencing results in notations they are unfa-
miliar with. Another use case for diff editors in the context of
low-code platforms is the differencing of data conforming to
models in applications engineered with the low-code platform.
Hence, approaches for model (and data) differencing in the
context of low-code platforms have particular requirements
and deserve special treatment.

This paper presents an approach for calculating differences
between A12 models and displaying these in a notation close
to the one used for originally creating the models. The
approach relies on a systematic method and, hence, can be
adapted to new model types with little effort. Moreover, as A12
model editors are meta-modeled using A12 models, the display
of differences can be applied both for model differences in the
development platform and for data differences in low-code
applications.

The remainder of this paper is structured as follows: Sec-
tion II explains foundations of the A12 low-code platform,



Fig. 1. User interface of the Simple Model Editor (SME) of the A12 enterprise low-code platform.

Section III introduces the terminology for model differences
used in this paper, and Section IV summarizes the require-
ments for model differencing in A12. Section V presents the
concept for the display of differences between A12 models
and their integration into A12’s model editor tool. Section VI
describes how difference editors are composed from reusable
building blocks, and Section VII discusses our approach
along with an outlook on potential future extensions. Finally
Section VIII compares our approach to related work, before
we conclude in Section IX.

II. THE A12 ENTERPRISE LOW-CODE PLATFORM

A12 [14] is an enterprise low-code platform for the devel-
opment, integration, maintenance, and operation of complex
business applications in large-scale IT landscapes. It combines
a low-code approach enabling business experts to create appli-
cation components without any programming knowledge with
enterprise-grade custom software development and system
integration. The overall A12 platform comprises two main
parts: The modeling platform and the runtime platform. The
modeling platform enables developing low-code applications
and consists of the simple model editor (SME), different model
types, and textual domain-specific languages (DSLs). The
runtime platform enables operating low-code applications and
consists of several modular client- and server-side components.

A. A12 Runtime Platform

Among other components, the A12 runtime platform com-
prises A12 engines, widgets, and data services. A12 engines
are client-side model interpreters of the A12 runtime platform.
Currently, A12 provides three different engines for forms,
tables, and tree structures. Each of these takes a data model, a
user interface (UI) model, and data as input. Engines compose
UI widgets from the A12 widget library to render different
interactive UIs depending on the corresponding model type.
Widgets are UI components, mainly for the input and display
of data. Data services is the main server-side component of
A12. Besides storing the data conforming to A12 data models,
it provides the models for client-side usage and offers data
filter and query capabilities.

A large number of extension points allow combining MDD
with professional custom software development and system
integration. However, even without any custom development,
the resulting business applications provide a rich feature set
including localization, responsive design, themeability, and
accessibility.

B. Model Types

Following the “data first” modeling paradigm [14], A12
modeling begins with defining the enterprise entities and their
interrelationships in terms of data models. The entities are
described by document models (DMs) that contain a tree
structure of groups that each can contain fields of different
types. Moreover, DMs contain validation and calculation rules
for fields. The interrelationships between entities are described
by relationship models that connect pairs of document models.

Modelers realize the application logic by defining validation
rules and computations via the integrated domain-specific
language and workflows via BPMN models. UI models usually
refer to A12 data models and establish connections between
the fields of data models and UI elements. Instead of a what-
you-see-is-what-you-get principle, the UI models describe the
underlying structure of the user interface. For each engine,
there is a specific UI model type, namely form, tree, and
overview model. The application model orchestrates the over-
all client application.

C. The Simple Model Editor (SME)

The SME is the main modeling tool for A12. Except for
BPMN models, which are edited using a third party modeling
tool, it supports all other A12 model types. Models are stored
and loaded from the local file system of the modeler. The
SME lists models in the workspace explorer, which gives an
overview of the available models. When a user selects a single
model, a model type-specific editor is opened. All SME parts
that are specific to a certain model type are contained in the
model type module (e.g., the DM module).

Figure 1 depicts a screenshot of the SME. The workspace
explorer is located on the left, while the document model editor
is in the center and the right of it and shows the content of the
DM DomainAddress. If instead, e.g., a form model (FM) is



Fig. 2. Example of SME-level and application-level models and data

selected in the workspace explorer, the SME displays the FM
editor in the center of the SME. The DM editor itself is divided
into two parts. The model’s element tree in the center of the
SME gives an overview of the model elements, and the field
editor on the right shows properties of the field selected in the
element tree. Field properties are modified through the field
editor. If another DM element (e.g., a group) is selected in the
model tree, the DM editor displays the corresponding editor (in
this case, the group editor) on the right side. DM elements can
be added, moved, and deleted via the model tree. Furthermore,
the DM editor has a side menu on the left side, where users can
switch between the model tree and, e.g., a form-based editor
for model settings and an overview-based table displaying type
definitions. Type definitions in DMs enable reuse of recurring
configurations of field properties (e.g, a number with a specific
lower and upper bound) for different fields. The model settings
include information about the model, such as its name and the
supported locales.

D. Meta-modeling

While the SME is the model editor for A12, it is also
built using A12. Especially, the specific model editors make
extensive use of model-driven components. Technically, a
specific model editor is a composition of different metamodels,
editor models, and (customized) engines. The engines have
data models as input, which together are regarded as the
metamodel for the corresponding model type. Moreover, the
different UI models are used to model the UI of the specific
editors. We refer to these as editor models.

The DM editor, for example, uses tree, overview, and
form models and, hence, all three engine types as part of
its implementation. Each A12 model is stored as a file. At
runtime of the SME, application level models are converted
into data that can be interpreted by the engines together with
the metamodels and editor models. Beside the composition of
engines, the editors are implemented using different program-
ming extension points of the runtime platform components.

Figure 2 shows different models used for building the SME
as well as A12-based low-code applications. The top part
shows a small excerpt of the models that are used for the
development of the DM editor that is part of the SME. The
DM metamodel used to build the DM editor is composed

Fig. 3. Displaying differences between model versions and variants

of different DMs and a single relationship model. The editor
models in the figure include the UI for the element tree (see
Figure 1) defined by the tree model ModelTree. Moreover,
the sub editors for specific model elements such as Group or
Fields are modeled using FMs. All editor models reference
their underlying data model.

When using the SME to create application-level models,
these models conform to the metamodels used to build the
SME. Figure 2 shows two exemplary application-level models.
Again, the UI model AddressForm references the data
model DomainAddress. Both models conform to their
metamodels, which is shown by the dashed arrow. Note that
the metamodel for FMs is omitted in the figure, but is present
in the SME project.

The bottom part of the figure displays exemplary entries
for application data provided to an A12 application via the
data services. In this example, the data comprises data entries
conforming to the model DomainAddress.

III. DIFFERENCE, DELTAS, VERSIONS, AND VARIANTS

Regarding the conceptual contents of a model difference,
approaches to model differencing can be classified into se-
mantic and syntactic differencing. The semantic difference
between two models is a set of counterexamples (aka. wit-
nesses) against the proposition that the compared models are
equivalent [16], [17]. For example, the semantic difference
between two UML class diagrams comprises the set of in-
stances (i.e., UML object diagrams) being valid for one of
the class diagrams but not for the other one [17]. In general,
however, this set of witnesses is typically infinite and thus
does not represent a complete description of the difference
between two models. In this paper, we consider syntactic
model differences, as it is customary in model versioning
in practice. The syntactic comparison of two models A and
B yields a sequence of transformations [18], where each
transformation in the sequence describes the addition, removal,
or modification of a model element of A and is referred to as
a delta. If all deltas are applied to the model A, the result is
the model B.

The evolution of models leads to different versions of a
model (cf. (linear) timeline in the version graph depicted on
the left side of Figure 3), for pairs of which the difference



can be described by an (ordered) list of deltas. Different
circumstances can lead to the presence of variants of a model.
These include the concurrent modification of the same model
in distributed modeling environments, or so-called clone-and-
own [19]reuse of models by copying an existing model and
adapting it to individual needs. In the version graph shown in
Figure 3, variants are depicted on the horizontal axis. Variants
always have a common ancestor version – unrelated variants
have the empty model as their common ancestor.

For the display of differences, we distinguish the “two-
way diff” that compares two models with each other from
the “three-way diff” that compares two models that have a
common ancestor. In the context of version control systems,
two-way diffs are often applied for comparing two versions of
the same model and three-way diffs are utilized for comparing
(co-evolved) variants of a model.

In general, we distinguish two forms of displaying the
difference in a two-way diff. As depicted in the top of Figure 3,
changes can be displayed in an inline representation that
interleaves the display of deltas with the original model. In the
alternative side-by-side representation, one model is displayed
on the left and the other one on the right side. Model elements
affected by deltas are highlighted. The bottom of Figure 3
depicts alternatives for displaying a three-way diff, which are
combinations of inline and side-by-side representations.

IV. REQUIREMENTS FOR MODEL DIFFERENCES IN A12

For the realization of calculating and displaying the dif-
ferences between models in an enterprise low-code platform
such as A12 beyond pure textual differencing, we first did a
careful requirements analysis before diving into design and
implementation. The requirements were elicited in collabora-
tion with different A12 users. One class of users was from
the user group of business analysts who use the platform as
modelers. Another class of users was software developers who
mainly contribute code to A12 low-code applications but who
are sometimes also also involved into modeling activities.

RQ1 Modelers should be able to get an overview of all
differences in a model

RQ2 Modelers should be able to inspect model differences in
a notation close to the original modeling environment

RQ3 Only semantically-relevant differences should be dis-
played to modelers

RQ4 The differencing infrastructure should be applicable both
for models in low-code development and for data on the
application level

RQ5 Developers should be able to build new diff editors from
reusable parts

We restrict the models that are comparable with the differ-
encing infrastructure to those that are of the same model type
in the same model type version. Any two models for which
this holds can be compared, regardless of, e.g., whether they
share a common ancestor version or not. Models that have
the same model type but different model type versions can be
compared if the model with the older model type version is

Fig. 4. UI components involved in the comparison of models in the SME

upgraded to the other model’s type version via a dedicated
model migration tool.

V. CALCULATING & DISPLAYING MODEL DIFFERENCES

The user-visible parts of comparing models in a low-code
platform are centered around the display of model differences
and its integration into the user interface of the platform.

A. Integration into the Platform UI

Platform users have to be able to trigger the comparison of
two models or two versions of a single model via the platform.
In the SME, the workspace explorer provides an overview
of all files in a workspace and, hence, is an appropriate
user interface location for integrating this trigger. A button
in the workspace explorer opens a dialog, in which models
and model versions can be selected for comparison. In the
context of integrating a version control system (VCS) into
a low-code platform, the model comparison should also be
triggered in certain VCS-specific use cases, e.g., to annotate
locally changed models in the overview with a specific icon
or to inform about local changes that will be committed to a
branch as part of a commit operation dialog.

When a user action triggers the model comparison, the
comparison result must be displayed in the platform’s UI. In
the SME, a user selection of models to compare opens up
the diff perspective as depicted in Figure 4. This perspective
comprises three UI components: the diff info bar at the top, the
delta view on the left side and the diff editor. The diff info bar
displays the names of the two models that are compared, the
model versions which are to be compared may be selected via
drop-down menus. Via drop-down selections, users can modify
these values. The figure depicts the comparison between the
versions v1 and v3 of the model DomainSurvey.

The delta view is a tree of deltas that result from the
model comparison. Because model editors in A12 are usually
composed of different overviews, trees, detailed form editors,
and editor tabs, the delta view enables identifying the changed
model parts at a glance (cf. RQ1). The delta view contains two
kinds of entries: editor-level deltas and detailed deltas, which
are described in Section V-B. Furthermore, the elements in



Fig. 5. Data structure of deltas

the delta view are clickable and open the diff editor for the
selected delta. This way, users can also navigate between the
deltas.

The main purpose of the diff editor is to gain a detailed
explanation of the difference described by a certain delta. To
do so, the diff editor uses the same form of representation that
is used when a model element is created or modified (cf. RQ2).
For instance, the DM editor comprises a model tree editor to
display and edit DM elements, such as fields, groups, and
rules. Moreover, it uses individual form-based editors to edit
properties of the DM elements. Hence, the diff editor for an
“added field” delta is based on the model tree editor, because
fields are added there. For a “modified field” delta, the diff
editor is based on the form-based field editor, because field
properties are modified there.

B. Data Structure for Deltas

The data structure for deltas has a tree shape, i.e., a delta can
be composed of other deltas on a lower level and may belong
to at most one enclosing delta at an upper level. Currently,
our approach uses three levels of deltas: Deltas on the top-
most level describe modified (model or data) artifacts. For
example, a delta describes that the model DomainSurvey
has been modified. On the level below, deltas describe changes
that affect entire (sub) editors, such as the field editor or the
model tree editor. For instance, these deltas describe that the
model tree has been modified or that the DM settings have
been modified. Deltas on this level are displayed in the delta
view as editor-level deltas. One level below, deltas describe
changes of elements inside an editor, such as a field that has
been added to the model tree. In the delta view, these deltas
are represented as detailed deltas.

The data structure, however, is not limited to these three
levels but is more general to prepare for further use cases in
the future. Hence, each delta has a Boolean flag indicating
whether the delta should be displayed in the delta view or
not.

Figure 5 depicts the data structure for deltas in A12. Besides
the composition of deltas and the flag for displaying deltas in
the delta view, each delta indicates an affected model element
kind via the DeltaRef. For instance, when comparing DMs,
a delta can affect the DM element kind Field. An affected
model element kind comprises a string representation, e.g.,
used for the delta view, and an (optional) identifier pointing
to the editor model that should be displayed if the delta is
opened in a diff editor. For instance, the diff editor model for

modifying a Field is DiffFieldEditor (cf. Section VI).
The value for the Boolean flag display is derived; it is true
if the diff editor model ID is present.

Currently, we distinguish three delta kinds: AddDelta,
RemoveDelta, and ModifyDelta. Add deltas refer to
the ID of the new element that has been added, whereas
remove deltas indicate the ID of the old element that has
been removed. Modify deltas can indicate both new and old
element IDs where the old element ID is optional and is only
present in case the ID changed due to the modification the
delta describes. The latter is useful, e.g., for clone detection
in which matching model elements are determined by other
means than the ID.

C. Calculating Deltas

While the data structure for deltas is agnostic to concrete
model types, the calculation of actual deltas is specific to the
type of the models that are compared. Among other reasons,
this is due to the fact that only semantically-relevant changes
should be displayed (cf. RQ3). Hence, every model type
module that supports model differencing in A12 must provide
an implementation of the delta calculation. The input for the
delta calculation are two models and its result is an instance of
the delta data structure. In each delta calculation, the first step
is to check whether the models are considered comparable,
by comparing the model type and the model type version (cf.
Section IV).

A12 models have an intrinsic tree structure that can be
traversed, e.g., by applying the visitor pattern [20]. The actual
realization and the order of traversal, however, is set for each
model type individually. The strategy for calculating deltas
relies on the tree structure of the models. This tree is traversed
in a top-down manner and corresponding elements in the
models are matched. If child elements are present then the
matching continues with matching the child elements. By
default, the elements are matched via their identifiers but
the matching criteria can be customized. A limitation of this
strategy, however, is the detection of move operations. In this
case, an add and a remove delta are calculated, which can be
combined to a move delta later [21], [22].

For document models, for example, the first step is com-
paring the model settings. The comparison of models settings
is composed of comparing the model names, the supported
characters and locales, labels, roles that should have access
to the model, and annotations. Comparing these, again, can
be composed of more detailed comparisons. If any of these
comparisons results in a difference, the comparison of the
model settings results in a “modified” delta that is displayed
in the delta view. Since all DM settings are editable via a
joint form-based editor, the ID of the diff editor model is
the one from the diff editor of the DM settings editor (see
below). Finer-grained deltas that are part of the delta for the
modification of the settings would all be displayed in the same
form. Therefore, the delta calculation could stop at this point,
but could also continue to calculate finer-grained deltas that



are not displayed. Afterwards, the comparison continues with
the model tree elements.

D. Displaying Deltas

All displayable deltas between two models are shown in
the delta view. If the difference between two models does
not contain any displayable delta, the two models are equal
or there is no semantically relevant difference between the
models. In both cases, the delta view remains empty. With
the delta data structure, the labels for the delta view entries
can be calculated by concatenating the delta kind, the affected
model element kind, and a human readable form of the element
ID. For instance, a remove delta for a field with the path1

title has the label “Removed Field title”. Additionally, the
delta kind is represented by an individual font color. The delta
view is implemented in an extensible way to support more
functionality, e.g., filtering and sorting of deltas in the future.

All entries of the delta view are clickable. When a user
clicks an entry in the delta view, the ID of the diff editor
model indicated in the delta data structure is used to load
the diff editor data. The model type of the diff editor model
determines which engine is used for the diff editor to open
and display the diff editor data.

While, in general, a model type module may use arbitrary
diff editor models, the implementation in A12 relies on a
common, systematic workflow to derive diff editor models
from editor models. Section VI describes the workflow, the
editor models, and the metamodels for differencing forms,
tables, and trees in more detail. Currently, the diff editors
produced via the workflow are two-way diff editors in a side-
by-side layout. However, this is determined only via the diff
editor models and it is also possible to produce other diff editor
layouts.

VI. SYSTEMATIC ENGINEERING OF DIFF EDITORS

Due to the large number of different model types in A12
(which is common for enterprise low-code platforms) and
because diff editors should be usable for comparing data in
low-code applications created with A12, a structured workflow
for creating new diff editors from reusable editor parts is
beneficial. This is covered by the requirement RQ5.

A. Architectural Overview

To increase the reuse, the differencing infrastructure is
separated into model-type-specific and model-type-agnostic
infrastructure parts. The latter parts can be reused across
all differencing infrastructures with optional customization
and result in the fact that the delta view can be reused
in a model-type-agnostic way. Section VI-B explains how
it integrates with the model-type-specific delta calculation
and delta display. Apart from the model-type-specific delta
calculation, the differencing infrastructure for each model type
must provide diff editor models for each model element that
may be referenced in the delta view of that model type. As

1Field paths (cf. Figure 1) must be unique within a document model and,
hence, can be used as a human readable form of the element ID for fields.

Fig. 6. Deriving diff editor models from editor models and diff metamodels
from metamodels

the editor models rely on data from the metamodels, it is also
necessary to derive diff metamodels from the metamodels. The
diff editor models rely on data from the diff metamodels.

For example, Figure 6 illustrates DM diff editor models
for the DM editor models as depicted in Figure 2. For each
model used to build the original editor, there must be a
corresponding diff editor model, such as DiffModelTree
and DiffFieldEditor. These new models are systemati-
cally derived from the original models. In the same way, diff
metamodels (e.g., DiffDomainField) are derived systematically
from the metamodels (e.g., DomainField). The diff metamodel
DiffDomainField describes and its instances provide the
data required for displaying the deltas between two DM fields.
The diff editor model DiffFieldEditor describes the
form-based UI of the diff editor for comparing two fields.
DiffModelTree is a tree model that describes the tree-
based diff editor for comparing two model trees.

Currently, the derivation process of diff editor models is
a manual activity that is planned to be automated in the
future. With a code generator [23], recommended diff editor
models can be synthesized and, if desired, adjusted manually
afterwards. The systematic derivation processes for displaying
differences in forms, tables, and trees are explained in Sections
VI-C and VI-D.

Note that the derivation process for models of the original
SME editors can also be applied to models on the application
level. For instance, the models DiffDomainAddress and
DiffAddressEditor can be derived from the correspond-
ing application-level models depicted in Figure 2. Together
with a custom delta calculation algorithm for addresses and
the reused delta view, an application-level diff perspective that
displays differences between application data conforming to
the DM DomainAddress can be created with little effort
(cf. RQ4).

B. Model-Type-Agnostic Delta View

The differencing infrastructure includes the delta data struc-
ture and the delta view (cf. Section V) as model-type-agnostic



Fig. 7. Communication between components when comparing and displaying the differences between A12 document models

components. Furthermore, the workspace explorer of the SME
is not directly aware of model types. Model type modules
are registered to the workspace explorer as plug-in modules.
The calculation of deltas is model-type-specific and, therefore,
typically part of a model type module. Similarly, the models
for the model type’s diff editors are derived with a generic,
systematic process, but still specific to the model type.

Figure 7 depicts an exemplary overview of the communi-
cation between the model-type-specific and the model-type-
agnostic parts of the infrastructure involved in displaying the
diff perspective. The central tasks that users can trigger are to
open the delta view, to open an editor-level delta and to open
a detailed delta.

Typically, users trigger the display of the delta view (and,
therefore, to open up the entire diff perspective) via the
workspace explorer, by selecting two models m1 and m2 that
should be compared. The comparison of versions and the one
of variants is not conceptually different, hence m1 and m2 can
also be two versions of a single model. The selection starts
a publish/subscriber communication to all registered model
type module plug-ins of the workspace explorer. The published
message is to calculate the deltas for m1 and m2. If a module
is capable of handling the model type of m1 and m2 (which
must be the same, cf. Section IV), it carries out the calculation
of the deltas. In the example of Figure 7, the models are DMs
and the module that can handle these contains the DMDiff
delta calculator. As a result, the module feeds the delta view
with the calculated deltas.

By clicking an element in the delta view, a user triggers
the display of the delta in the corresponding diff editor. More
precisely, after an element has been clicked, the delta view
starts a publish/subscriber communication to open the diff
editor model referenced in the instance of the delta data
structure. Through this, the delta view does not need to
communicate directly with any model type module. In the
example, the clicked delta d1 has an affected model element
kind from the DM module described by the diff editor model
em1, which is a form model. Therefore, the DM module
responds with opening the form-based diff editor described
by em1 with the corresponding (customized) form engine.

C. Displaying Differences in Forms

To display the differences between two FMs, our approach
employs a diff editor model that is, again, an FM (cf. Figure 6).

This requires that the diff metamodel has been derived from
the metamodel of the original editor to describe the data
displayed in the diff editor. The diff metamodel is derived
from an original metamodel by introducing a new root group
that has two subgroups left and right. Each subgroup includes
the root group of the original document model, which builds
the foundation for a side-by-side diff editor (cf. Section II).
For example, Figure 6 contains a visualized abstraction of the
model tree contained in the metamodel DomainField. The
derived diff metamodel DiffDomainField contains this
tree twice, and an additional new root node. In a similar way,
each screen described by an original form model is divided
into two sub screens left and right with all elements of the
original model. The screen elements on the left part of the
form model refer to diff DM elements of the left group. Vice
versa, the same holds for the right screen part and group.
For example, Figure 6 contains a visualized abstraction of the
screen described by the FM FieldEditor. The derived diff
editor model contains this screen twice as sub screen.

If a user selects an editor-level delta in the delta view that
references a form diff editor model (i.e., a diff editor model of
the model type FM), the corresponding form-based diff editor
is displayed and highlights all detailed deltas contained in this
editor-level delta. If a user selects a detailed delta in the delta
view, the same diff editor is displayed but highlights only the
selected delta.

The form engine interprets the form diff editor models
which basically consist of two identical editor models left and
right. The elements of the two editor models form tuples where
for each element of the left editor model (e.g., an input field or
a checkbox) there is a corresponding element in the right editor
model and vice versa. The form engine was customized to
highlight these elements if the values differ, e.g., if a checkbox
is checked in the left but not in the right editor. Through
this, the form can be edited and the differences are updated
instantly.

D. Displaying Differences in Tables and Trees

Displaying the difference in tables and trees is generally
similar to displaying the difference between forms. The dif-
ference is displayed in the same model kind, i.e., if the original
editor model is a tree model, the diff editor is also based on a
tree model. Selecting an editor-level delta with a tree diff editor
model in the delta view opens the tree-based diff editor and



highlights all changes described by detailed deltas contained
in this editor-level delta. Selecting a contained detailed delta
in the delta view opens the same diff editor, but highlights
only the selected delta. Therefore, different delta view entries
may display the same table (or tree), but highlight different
parts of it. The same holds for tables and overview-based
(diff) editors. Moreover, the tree and overview elements of
tree- and overview-based diff editors are typically clickable
for the purpose of navigation, if they are in the original tree-
and overview-based editor models. For instance, field entries in
the model tree editor of DMs are clickable to inspect the field
in the form-based field editor. Therefore, field entries in the
model tree diff editor are also clickable and open form-based
diff editors. We display the difference between two tables or
trees with an inline diff editor (cf. Section II).

An overview model uses a DM to describe the data that
is displayed. The data source for a diff editor model that is
an overview model is a diff metamodel derived in the same
way as for the differencing of forms described in the previous
section. If the value of a left-side diff metamodel element can
be matched to a value of the corresponding right-side diff
metamodel element, the values are compared. If these values
differ, the overview diff editor model cell is highlighted as
being modified. If there is no corresponding right-side diff
metamodel element, the overview diff editor model cell is
highlighted as being added. Vice versa, the overview diff editor
model cell is highlighted as being removed if there is no
corresponding left-side diff metamodel element for a given
right-side diff metamodel element. The same is applied to
model elements that represent entire rows of the overview diff
editor model.

For the user-visible part of the approach, the display of
differences between tables and the one for differences between
trees are almost equal. However, instead of a single DM
that describes the data for an overview model, the data for
a tree model is described by multiple DMs and relationship
models among these. The diff metamodels for this are derived
as described above. For relationship metamodels, there is
no dedicated diff metamodel. Instead, on the data level, a
relationship is either present or not.

VII. DISCUSSION

A. Major Design Decisions
The main technical contribution of this work is a method

for integrating model differencing capabilities into a low-code
platform, addressing a number of specific requirements arising
on top of the general challenge of model differencing in MDD.
Through the reusable delta view and the systematic approach
for deriving diff editors, highly customized diff perspectives
for new model types are created as follows:

1) For each editor model, derive a diff editor model via the
systematic process.

2) For each metamodel used by an editor model, derive a
diff metamodel via the systematic process.

3) Implement a model-type-specific diff algorithm or reuse
a generic diff algorithm

4) Integrate diff editors and diff algorithm with diff view
and establish communication among these

We have prototypically implemented this approach for se-
lected model types of the low-code platform A12 and based
on the following design decisions wrt. difference calculation
and display.

Our approach currently uses diff editor models for the
display of diff editors and corresponding (diff) metamodels.
Alternatively, it is possible to display deltas by opening the
original editor twice, where each instance displays the data
of one of the compared models/model versions. Additionally,
the widgets these editors use could be customized to highlight
differences. This would allow using the original editor models
and metamodels for displaying deltas. However, this requires
more effort in synchronizing the editor states, e.g., regarding
foldable or conditionally displayed sections or scroll bars.

Moreover, the approach for deriving diff editors produces
2-way diff editors (cf. Figure 3). 3-way diff editors can be
derived by slightly adjusting the produced diff models, such
that these contain a third “center” model part.

The diff overview of our approach currently contains a list
of delta operations whereas the tree data structure for deltas
can also be leveraged to calculate and display the deltas in
a more detailed level. We made this decision, because it is
in line with the diff editor that is opened when a delta is
selected. If, in the future, we obtain feedback from modelers
that a higher level of detail is desired in the diff overview, we
will exchange the list view with a tree view, where sub items
can be collapsed and expanded.

Semantically irrelevant changes, such as, the actual order of
persisted array elements where the array order has no meaning
in the abstract syntax, should not be presented to the users.
Sometimes, the model type alone does not pose a meaning
to a difference, but the implementation part in a low-code
platform does. For instance, FMs have a list of annotations.
Depending on the customization of the form engine in a
concrete application, an annotation can be given a meaning
and then, the order of FM annotations could be meaningful
for the model interpretation. Hence, we consider all changes
to the model that users can make via the projectional editors
as semantically relevant. Any changes that do not modify
the projectional representation of the model is not considered
semantically relevant. This includes changes, which are not
modifiable through the projectional editors that users make by
directly editing the models.

B. Future Research Perspectives

Currently, our editors only support to inspect the differences
between models, but they do not support model merging.
However, making the diff editors (partially) editable is the
foundation for realizing merge editors, which we will investi-
gate in the future.

More generally, we are convinced that a holistic approach
to model versioning and evolution in low-code platforms
not only requires to model diff editors that enable a highly
customized presentation of model differences, but we also



want to customize our differencing facilities wrt. to the
underlying edit operations that are meaningful from a user
perspective. Again, we will draw from foundational work in
the context of research on in MDD [21], [24]–[26]. This line of
research relies on an executable yet declarative specification of
model edit operations based on graph transformation concepts,
enabling a bunch of further use cases for effectively man-
aging model evolution. From an analytical perspective, low-
level model differences comprising elementary changes (i.e.,
adding, deleting and modifying single model elements) may
be semantically lifted to higher-level edit operations including
model-type specific refactorings, thus providing a meaningful
yet compact description of model differences serving as basis
for further reasoning [21], [24]. From a constructive perspec-
tive, executable edit operations may be wrapped by editing
commands which are being integrated into existing model
editors, thus enabling a more sophisticated editing support as
known from modern development environments in classical
source code-centric development. Recent research results even
combine the analytical and constructive perspective, e.g., for
the sake of repairing models by complementing incomplete
editing processes that leave a model (or pairs of interrelated
models) in an inconsistent state [26].

The challenge in adopting all of these techniques in the
context of low-code platforms is the same as for adopt-
ing techniques for model differencing: Existing research has
mostly focused on the algorithmic perspective of the developed
solutions and its empirical evaluation in terms of controlled
experiments, while aspects such as integration into existing
ecosystems, presentation and user interaction have been largely
neglected. Our aim for future work is to bridge this gap
by wrapping the underlying foundations and mostly formal
notations by a modeling approach being accessible to the
various stakeholders of a low-code development platform.

VIII. RELATED WORK

Out of the variety of existing low-code platforms [6],
[8], [27], we consider Salesforce [28], Appian [29], Pega
[30], Mendix [31], OutSystems [32], and Microsoft Power
Apps [33] to be the ones most related to A12. Similar to
A12, Pega, Mendix, and Salesforce are low-code platforms
to develop complex enterprise application that use visual data
modeling, validation, and relations. In contrast to these low-
code platforms, A12 relies on the data-first approach that
allows to focus on modeling the data and flexibly use it for
different applications. While low-code platforms can easily be
used by software developers, A12 as well as Appian, Out-
systems, Mendix, Salesforce, and Microsoft Power Apps also
target citizen developers as their users. A model differencing
approach focused on presenting differences in a way similar to
editing the models like the one presented in this paper would
also be applicable for these low-code platforms.

As already mentioned in the introduction, the scientific liter-
ature on model differencing mainly focuses on the algorithmic
perspective, but largely neglects the aspect of presenting model
differences in a user-friendly way. Nonetheless, there are a

few tools that originate from an academic context and that
enable basic forms of a difference presentation. The most
prominent one, EMF Compare [34], provides a viewer for
side-by-side changes as illustrated in Figure 3, however, by
reusing a generic tree-based editor provided by the Eclipse
Modeling Framework (EMF) that presents EMF models in
terms if their abstract syntax. LemonTree [35] is a stan-
dalone model versioning tool integrated with the modeling
tool Enterprise Architect [36]. Similar to the delta view in
our approach, LemonTree contains a tree browser providing
an overview of model differences. Moreover, detailed deltas
can be inspected in a diagram visualization and in a property
viewer. LemonTree has a rich feature set and is integrated
with various technologies, e.g., version control systems. To the
best of our knowledge, it does not focus on representing non-
diagrammatic models in a notation close to the one for editing
the models. The same limitation applies to the academic tool
known as SiLift [37], whose difference display component
cannot be generalized to non-diagrammatic models as used
in low-code platforms.

A few academic papers have presented sketches of further
diagrammatic representations of model differences, notably so-
called unified diagrams [38] in the context of model merg-
ing [18], [39]. A unified document is a brute force merge
of two models in the sense that all information contained in
both models is united. In case of competing name changes,
both names are shown side by side at this model element.
Deleted model elements are not deleted, but only marked
as deleted. However, to the best of our knowledge, none
of these sketches has been ever implemented in a dedicated
tool that has even come close to being mature enough to be
used in practice. The reason for this is the complexity of an
implementation of unified diagrams, which can hardly reuse an
existing diagram editor of the underlying model type. Even if
a unified document looks very similar to an original model
it is actually a new type of model with a different meta-
model which represents information about deltas between the
models. On the contrary, our approach is centered around the
requirement to build diff editors from reusable parts.

More generally, supporting software evolution, collaborative
development, variability management, and version control
have been identified as critical challenges for low-code plat-
forms [40]–[42]. We argue that the foundation for integrating
solutions to these challenges into low-code platforms is a
suitable form of representation of model differences, such as,
via the diff editors presented in this paper.

IX. CONCLUSION

For the purpose of being used within low-code platforms,
classical model differencing approaches need to be rethought
and adapted. In this paper, we presented an approach for
calculating and displaying differences between models in the
context of low-code platforms. The approach comprises UI
elements that integrate both into the low-code development
platform and its applications. The UI elements enable modelers
to control the model difference calculation, to obtain an



overview of the difference between two models, and to inspect
the comprising deltas in detail. The latter uses a form of
representation close to the one employed for creating the
models. The UI elements as well as the data structure for
model differences and the differencing processes are composed
of reusable building blocks. This enables the integration of
differencing facilities for new model types into the low-code
platforms and fosters the applicability of differencing on the
application level. The approach is planned to be integrated into
the enterprise low-code platform A12 and it can be applied to
other low-code approaches as well.

REFERENCES

[1] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wimmer,
“An Introduction to Model Versioning,” Formal Methods for Model-
Driven Engineering: 12th Intl. School on Formal Methods for the Design
of Computer, Communication, and Software Systems (SFM 2012), pp.
336–398, 2012.

[2] K. Pohl, G. Böckle, and F. Van Der Linden, Software Product Line
Engineering. Springer, 2005, vol. 10.

[3] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wasowski, “A survey of variability modeling in industrial
practice,” in 7th Intl. Workshop on Variability Modelling of Software-
intensive Systems, 2013, pp. 1–8.

[4] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation of
Code Clone Detection Ttechniques and Tools: A Qualitative Approach,”
Science of computer programming, vol. 74, no. 7, pp. 470–495, 2009.

[5] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development: Technology, Engineering, Management. John
Wiley & Sons, 2013.

[6] A. Bucaioni, A. Cicchetti, and F. Ciccozzi, “Modelling in Low-Code
Development: A Multi-Vocal Systematic Review,” Software and Systems
Modeling, vol. 21, no. 5, pp. 1959–1981, 2022.

[7] A. C. Bock and U. Frank, “Low-Code Platform,” Business & Information
Systems Engineering, vol. 63, pp. 733–740, 2021.

[8] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting
the Understanding and Comparison of Low-Code Development Plat-
forms,” in 46th Euromicro Conference on Software Engineering and
Advanced Applications. IEEE, 2020, pp. 171–178.

[9] C. Atkinson and T. Kuhne, “Model-Driven Development: A Metamod-
eling Foundation,” IEEE Software, vol. 20, no. 5, pp. 36–41, 2003.

[10] D. Harel and B. Rumpe, “Meaningful Modeling: What’s the Semantics
of ”Semantics”?” IEEE Computer Journal, vol. 37, no. 10, pp. 64–72,
October 2004.

[11] M. Völter, J. Siegmund, T. Berger, and B. Kolb, “Towards User-
Friendly Projectional Editors,” in 7th Intl. Conf. on Software Language
Engineering. Springer, 2014, pp. 41–61.

[12] K. Altmanninger, P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland,
and M. Wimmer, “Why model versioning research is needed!? an
experience report,” in MoDSE-MCCM Workshop @ MoDELS, vol. 9,
2009, pp. 1–12.

[13] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige, “Different
Models for Model Matching: An Analysis of Approaches to Support
Model Differencing,” in ICSE Workshop on Comparison and Versioning
of Software Models. IEEE, 2009, pp. 1–6.

[14] H. Mehmanesh, S. Gandenberger, A. Weiss, T. Kneist, and S. Lorenz,
“Whitepaper A12 Enterprise Low Code,” mgm technology partners
GmbH, Tech. Rep., 2022.

[15] F. Brooks and H. Kugler, No Silver Bullet. April, 1987.
[16] A. Butting, O. Kautz, B. Rumpe, and A. Wortmann, “Semantic Differ-

encing for Message-Driven Component & Connector Architectures,” in
Intl. Conf. on Software Architecture. IEEE, 2017, pp. 145–154.

[17] S. Maoz, J. O. Ringert, and B. Rumpe, “Cddiff: Semantic differencing
for class diagrams,” in 25th European Conference Object-Oriented
Programming. Springer, 2011, pp. 230–254.

[18] M. Alanen and I. Porres, “Difference and Union of Models,” in UML
2003-The Unified Modeling Language. Modeling Languages and Appli-
cations: 6th Intl. Conf. Springer, 2003, pp. 2–17.

[19] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An Exploratory Study of Cloning in Industrial Software
Product Lines,” in 17th European Conference on Software Maintenance
and Reengineering. IEEE, 2013, pp. 25–34.

[20] E. Gamma, R. Helm, R. Johnson, R. E. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software. Pearson,
1995.

[21] T. Kehrer, U. Kelter, and G. Taentzer, “A Rule-Based Approach to
the Semantic Lifting of Model Differences in the Context of Model
Versioning,” in 26th Intl. Conf. on Automated Software Engineering,
2011, pp. 163–172.

[22] P. Langer, M. Wimmer, P. Brosch, M. Herrmannsdörfer, M. Seidl,
K. Wieland, and G. Kappel, “A posteriori operation detection in evolving
software models,” Journal of Systems and Software, vol. 86, no. 2, pp.
551–566, 2013.

[23] K. Czarnecki and S. Helsen, “Classification of Model Transformation
Approaches,” in 2nd OOPSLA Workshop on Generative Techniques in
the Context of the Model Driven Architecture, vol. 45, no. 3, 2003, pp.
1–17.

[24] T. Kehrer, U. Kelter, and G. Taentzer, “Consistency-preserving edit
scripts in model versioning,” in 28th Intl. Conf. on Automated Software
Engineering. IEEE, 2013, pp. 191–201.

[25] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer, M. Ohrndorf,
and M. Tichy, “Henshin: A usability-focused framework for emf model
transformation development,” in 10th Intl. Conf. on Graph Transforma-
tion. Springer, 2017, pp. 196–208.

[26] M. Ohrndorf, C. Pietsch, U. Kelter, L. Grunske, and T. Kehrer, “History-
based model repair recommendations,” ACM Transactions on Software
Engineering and Methodology, vol. 30, no. 2, pp. 1–46, 2021.

[27] Best Low-Code Development Platforms. [Online]. Available: https:
//www.g2.com/categories/low-code-development-platforms

[28] Salesforce App Cloud Platform Overview. [Online]. Available:
https://developer.salesforce.com/platform

[29] Appian platform overview. [Online]. Available: https://www.appian.com/
[30] Pega Low Code App Development Overview. [Online]. Available:

https://www.pega.com/de/products/platform/low-code-app-development
[31] Mendix Platform Features. [Online]. Available: https://www.mendix.

com/platform/
[32] Outsystem Platform Features. [Online]. Available: https://www.

outsystems.com/platform/
[33] Microsoft Power Apps Platform Overview. [Online]. Available:

https://docs.microsoft.com/en-us/powerapps/maker/
[34] C. Brun and A. Pierantonio, “Model differences in the eclipse modeling

framework,” UPGRADE, The European Journal for the Informatics
Professional, vol. 9, no. 2, pp. 29–34, 2008.

[35] LieberLieber Lemon Tree Website. [Online]. Available: https://www.
lieberlieber.com/lemontree

[36] Enterprise-Architect Visual Modeling Platform. [Online]. Available:
https://www.sparxsystems.eu/enterprise-architect

[37] T. Kehrer, U. Kelter, M. Ohrndorf, and T. Sollbach, “Understanding
model evolution through semantically lifting model differences with
silift,” in 28th Intl. Conf. on Software Maintenance. IEEE, 2012, pp.
638–641.

[38] D. Ohst, M. Welle, and U. Kelter, “Differences between versions of uml
diagrams,” in 9th European Software Engineering Conf. held jointly
with 11th ACM SIGSOFT Intl. Symp. on Foundations of Software
Engineering, 2003, pp. 227–236.

[39] A. Mehra, J. Grundy, and J. Hosking, “A generic approach to supporting
diagram differencing and merging for collaborative design,” in 20th Intl.
Conf. on Automated Software Engineering, 2005, pp. 204–213.

[40] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and
M. Wimmer, “Low-Code Development and Model-Driven Engineering:
Two Sides of the Same Coin?” Software and Systems Modeling, vol. 21,
no. 2, pp. 437–446, 2022.

[41] K. Rokis and M. Kirikova, “Challenges of Low-Code/No-Code Soft-
ware Development: A Literature Review,” in Perspectives in Business
Informatics Research: 21st Intl. Conf. on Business Informatics Research.
Springer, 2022, pp. 3–17.

[42] A. Bragança, I. Azevedo, N. Bettencourt, C. Morais, D. Teixeira,
and D. Caetano, “Towards Supporting SPL Engineering in Low-Code
Platforms Using a DSL Approach,” in 20th Intl. Conf. on Generative
Programming: Concepts and Experiences, 2021, pp. 16–28.

https://www.g2.com/categories/low-code-development-platforms
https://www.g2.com/categories/low-code-development-platforms
https://developer.salesforce.com/platform
https://www.appian.com/
https://www.pega.com/de/products/platform/low-code-app-development
https://www.mendix.com/platform/
https://www.mendix.com/platform/
https://www.outsystems.com/platform/
https://www.outsystems.com/platform/
https://docs.microsoft.com/en-us/powerapps/maker/
https://www.lieberlieber.com/lemontree
https://www.lieberlieber.com/lemontree
https://www.sparxsystems.eu/enterprise-architect

	Introduction
	The A12 Enterprise Low-Code Platform
	A12 Runtime Platform
	Model Types
	The Simple Model Editor (SME)
	Meta-modeling

	Difference, Deltas, Versions, and Variants
	Requirements for Model Differences in A12
	Calculating & Displaying Model Differences
	Integration into the Platform UI
	Data Structure for Deltas
	Calculating Deltas
	Displaying Deltas

	Systematic Engineering of Diff Editors
	Architectural Overview
	Model-Type-Agnostic Delta View
	Displaying Differences in Forms
	Displaying Differences in Tables and Trees

	Discussion
	Major Design Decisions
	Future Research Perspectives

	Related Work
	Conclusion
	References

